LETTER TO THE EDITOR

Depression of T_c with Rare Earth Substitution for La in $La_{2-x}Sr_xCuO_4$ Superconductors

M. A. SUBRAMANIAN AND J. GOPALAKRISHNAN

Central Research and Development Department, E. I. du Pont de Nemours and Company, Experimental Station, Wilmington, Delaware 19880-0262

AND A. W. SLEIGHT

Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003

Communicated by J. M. Honig, October 23, 1989

Phases of the type $La_{2-x-y}R_xSr_yCuO_{4-z}$, where R is Pr, Nd, Sm, Eu, or Gd, have been prepared for various values of x and y. All phases prepared had the La_2CuO_4 structure. The general trend for fixed y is that T_c decreases as the four coplanar Cu–O distances decrease. This unexpected correlation between T_c and Cu–O distance is explained by our finding that the Cu^{III} concentration also decreases as these R cations are substituted for La. The amount of R that can be substituted for La increases as R becomes larger. For R = Pr, the x value reaches about 0.8. Such phases, for example, $La_{1.05}Pr_{0.80}$ Sr_{0.15}CuO₄, do not show a depressed T_c , indicating that Pr does not always adversely affect superconductivity in copper oxide based phases as it does in the YBa₂Cu₃O₇ type structure. © 1990 Academic Press, Inc.

Introduction

For copper oxide based superconductors, good correlations have been established between T_c and both the carrier concentration (i.e., Cu^{III} or Cu^I) and the Cu–O distance for the four highly covalent coplanar bonds (1, 2). In La_{2-x}A_xCuO₄ phases, where A is Ca, Sr, Ba, or Na, increasing x leads to an increase in T_c as the Cu–O distance decreases (3, 4). However, the carrier concentration is also increasing with increasing x. Thus, it is not clear whether we should regard this as a T_c correlation with carrier concentration or as a T_c correlation with Cu–O distance. The fact that T_c also increases with pressure suggests that there is a correlation of T_c with Cu–O distance which is independent of carrier concentration (5). A way to confirm this correlation might be partially to substitute some of the smaller rare earth cations for La in a $La_{2-x}A_xCuO_4$ superconductor. Such substitutions would be expected to give shorter Cu–O distances without changing the carrier concentration.

Compositions of the type $La_{2-x-y}R_x$ Sr_yCuO_{4-z} are also of interest because, at complete substitution of rare earths *R* for La, a new structure is produced which is our only example of *n*-type copper oxides which superconduct. Thus, a better under-

0022-4596/90 \$3.00 Copyright © 1990 by Academic Press, Inc. All rights of reproduction in any form reserved. standing of *p*-type $La_{2-x-y}R_xSr_yCuO_{4-z}$ phases might help us to better understand the *n*-type $R_{2-x}A_xCuO_4$ superconductors because we might better understand the influence of the *R* cations.

Experimental

Members of the $La_{2-x-y}R_xSr_yCuO_4$ series for various values of x and y were prepared by heating appropriate mixtures of La_2O_3 , CuO, R_2O_3 , and SrO₂ in air at 1100–1150°C for 24–36 hr in flowing oxygen atmosphere. Pr₂O₃ was prepared by hydrogen reduction of Pr₆O₁₁ at 750°C. Formation of single phase products was checked by X-ray diffraction with CuK α radiation. Unit cell dimensions were refined by least squares. The test for superconductivity was made by the ac mutual inductance technique. The Cu¹¹¹ content was analyzed by titrimetry (1).

Results

Broad ranges of single phase compositions of the type $La_{2-x-y}R_xSr_yCuO_{4-z}$ were successfully prepared, where R is Pr, Nd, Sm, Eu, and Gd. Figure 1 shows the solid solution limits for various rare earths (R)

FIG. 1. Range of existence of single phase materials in the system $La_{2-x-y}R_xSr_yCu_2O_4$ when y = 0.15. The superconducting range is shaded.

FIG. 2. Variation of a [or (a + b)/2] and c cell dimensions for La_{1.85-x} R_x Sr_{0.15}CuO₄ as a function of R.

and the shaded portion of the chart shows the superconducting range when y is 0.15. Attempts to prepare analogous phases with significant quantities of even smaller rare earth cations led to products which were not single phase. The room temperature symmetry of the $La_{2-x-y}R_xSr_yCuO_{4-z}$ phases prepared was usually tetragonal but was orthorhombic when y was 0.15 and x >0.4 in the case of Nd, x > 0.3 in the case of Sm. None of the phases with room temperature orthorhombic symmetry became superconducting at low temperatures.

To study the trends of substituting R for La, y was fixed at either 0.15 or 0.20. For fixed x and y, the unit cell dimensions decreased as the size of the rare earth (R)decreased (Fig. 2). The Cu-O distance of interest is one-half of the *a* or *b* cell edge. As shown in Figs. 3 and 4, T_c decreases as *R* becomes smaller. Since T_c also decreases with increasing x, T_c is in fact always decreasing with decreasing Cu-O distance for these phases. Several other laboratories have reported essentially the same trends for more limited ranges of compositions (6-11). However, none of these other laboratories reported measurements of carrier concentration or Cu^{III} concentration. Our titrations show that the CuIII concentration

FIG. 3. Variation of T_c and carrier concentration (Cu^{III}) as a function of R for La_{1.7} $R_{0.15}$ Sr_{0.15}CuO₄.

decreases as *R* becomes smaller and as *x* becomes greater (Figs. 3 and 4). There is a very good correlation between T_c and the Cu^{III} concentration (Figs. 5 and 6).

Our attempts to substitute Pr for La in La_{1.85-x}Pr_xSr_{0.15}CuO₄ showed that single phase samples with tetragonal La₂CuO₄-type structure exist for x values up to 0.8. Both a and c cell dimensions showed a slight decrease as x increases (Fig. 7). However, unlike other rare earth substitutions, T_c does not precipitously decline as x in-

FIG. 4. Variation of T_c and carrier concentration (Cu^{III}) as a function of R for La_{1.65} $R_{0.2}$ Sr_{0.15}CuO₄.

FIG. 5. Variation of T_c vs carrier concentration for La_{1.85-x} R_x Sr_{0.15}CuO₄.

creases. Our titrations show that the Cu^{III} concentration is always high and nearly independent of x (Fig. 8). The behavior of La_{1.85-x}Pr_xSr_{0.15}CuO₄ phases is very much in contrast to $Y_{1-x}Pr_xBa_2Cu_3O_7$ phases where one observes a rapid disappearance of superconductivity as x increases from zero.

Discussion

One might have expected that La_{2-x-y} $R_x Sr_y CuO_{4-z}$ phases would have yielded new information on the correlation between

FIG. 6. Variation of T_c vs carrier concentration for La_{1.85-x} R_x Sr_{0.2}CuO₄.

FIG. 7. Variation of a and c cell dimensions vs x for $La_{1.85-x}Pr_xSr_{0.15}CuO_4$.

 T_c and the Cu-O distance. Instead, any such correlation is obscured by the obvious correlation between carrier concentration and T_c . The correlation between T_c and carrier concentration is, in fact, very good. Since oxidation of Cu^{II} to Cu^{III} represents removal of antibonding electrons from the Cu-O bonds, increasing the carrier concentration in p-type systems is expected to lead to shorter Cu-O distances. Thus, correlations of T_c with Cu–O distance may in general really be reflecting the correlation between $T_{\rm c}$ and carrier concentration which is frequently not well determined. Our results show that it is very easy for the correlation of carrier concentration with T_c to dominate the correlation of T_c with Cu–O distance. The observation that T_c decreases with increasing pressure for the *n*-type copper oxide superconductors (12) also indicates that there is no universal increase of T_c with decreasing Cu-O distance.

For the La_{2-x-y} R_x Sr_yCuO_{4-z} phases, the oxygen deficiency increases as R becomes smaller and more concentrated. In retrospect, this is not too surprising because we know that stabilization of Cu^{III} in oxides requires the presence of highly basic cations (13). The basicity of the rare earth cations

decreases as their size decreases. Thus, the R cations become less effective in stabilizing Cu^{III} as their size decreases. This effect was previously apparent in attempts to dope the R_2 CuO₄ phases *p*-type. Phases of the type $R_{2-x}A_x$ CuO₄ in the *T'* structure, where *R* is Pr, Nd, Sm, Eu, or Gd and *A* is the divalent cation Sr or Ca, fail to produce superconducting or even metallic properties (*14*). This failure is presumably caused by the inability to stabilize sufficient quantities of Cu^{III} in such systems. The role of basic cations in stabilizing sufficient Cu^{III} for superconductivity was also noted for analogs of Bi₂Sr₂CaCu₂O₈ (*15*).

In the YBa₂Cu₃O₇ structure, substitution of Pr for Y causes a rapid disappearance of superconductivity (16, 17). In fact, PrBa₂ Cu₃O₇ is not even metallic. An obvious explanation would be that Pr is tetravalent instead of trivalent. However, the consensus is that Pr is essentially trivalent (17). In the YBa₂Cu₃O₇ structure, Pr on Y sites bonds only to oxygens that are strongly bound to copper in the CuO₂ sheets. However, in the La₂CuO₄ structure, Pr forms its strongest bonds to oxygen that is only weakly bound to copper. Thus, we may expect stronger Pr-Cu hybridization in the YBa₂Cu₃O₇

FIG. 8. Variation of T_c and carrier concentration (Cu^{III}) for La_{1.85-x}Pr_xSr_{0.15}CuO₄ as a function of x.

structure than in the La_2CuO_4 structure. The stronger hybridization would in turn adversely affect superconductivity.

References

- M. W. SHAFER, T. PENNEY, AND B. L. OLSON, Phys. Rev. B 36, 4047 (1987).
- 2. J. B. TORRANCE, Y. TOKURA, A. I. NAZZAL, A. BEZINGE, T. C. HUANG, AND S. S. P. PARKIN, *Phys. Rev. Lett.* **61**, 1127 (1988).
- 3. K. KISHIO, K. KITAZAWA, S. KANBE, I. YASUDA, N. SUGII, H. TAKAGI, S. UCHIDA, K. FUEKI, AND S. TANAKA, *Chem. Lett.*, 429 (1987).
- M. A. SUBRAMANIAN, J. GOPALAKRISHNAN, C. C. TORARDI, T. R. ASKEW, R. B. FLIPPEN, A. W. SLEIGHT, J. J. LIN, AND S. J. POON, *Science* 240, 4965 (1988).
- H. TAKAHASKI et al., Japan. J. Appl. Phys. 26, L504; S. YOMO et al., Japan. J. Appl. Phys., 1603;
 C. W. CHU et al., Science 235, 567 (1987).
- 6. I. FELNER, Solid State Commun. 62, 791 (1987).
- P. GANGULY, R. A. MOHAM RAM, K. SREEHAR, AND C. N. R. RAO, Solid State Commun. 62, 807 (1987).
- J. M. TARASCON, L. H. GREENE, W. R. MCKIN-NON, AND G. W. HULL, Solid State Commun. 63, 499 (1987).
- 9. W. K. KWOK, G. W. CRABTREE, A. UMEZAWA,

E. E. ALP, L. MORSS, AND L. SODERHOLM, Japan. J. Appl. Phys. 26, 1087 (1987).

- T. HASEGAWA, K. KISHIO, M. AOKI, N. OOBA, K. KITAZAWA, K. FUEKI, S. UCHIDA, AND S. TANAKA, Japan. J. Appl. Phys. 26, L337 (1987).
- L. SODERHOLM, S. MINI, B. DABROWSKI, G. W. CARBTREE, D. G. HINKS, AND E. E. ALP, J. Less-Common Met. 153, 207 (1989).
- C. L. SEAMAN, N. Y. AYOUB, T. BJORNHOLM, E. A. EARLY, S. GHAMATY, B. W. LEE, J. T. MARKERT, J. J. NEUMEIER, P. K. TASI, AND M. B. MAPLE, *Physica C* 159, P391 (1989).
- A. W. SLEIGHT, in "Chemistry of High-Temperature Superconductors" (D. L. Nelson, M. S. Whittingham, and T. F. George, Eds.) pp. 2–12, American Chemical Society, Washington, DC (1987); A. W. SLEIGHT, in "High Temperature Superconducting Materials" (W. E. Hatfield and J. H. Miller, Jr., Eds.), pp. 1–36, Dekker, New York (1988).
- 14. J. GOPALAKRISHNAN, M. A. SUBRAMANIAN, C. C. TORARDI, J. P. ATTFIELD, AND A. W. SLEIGHT, Mat. Res. Bull. 24, 321 (1989).
- J. GOPALKRISHNAN, M. A. SUBRAMANIAN, AND A. W. SLEIGHT, J. Solid State Chem. 80, 156 (1989).
- L. SODERHOLM, K. ZHANG, D. G. HINKS, M. A. BENO, J. D. JORGENSEN, C. U. SEGRE, AND I. K. SCHULLER, *Nature (London)* 328, 604 (1987).
- 17. J. T. MARKERT, B. D. DUNLAP, AND M. B. MA-PLE, *MRS Bull.* XIV, 37 (1989).